Меню Рубрики

Сложные случаи разложения многочленов на множители. Разложение на множители разности степеней Онлайн разложение на множители одночлен

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

Содержание


См. также: Методы разложения многочленов на множители
Корни квадратного уравнения
Решение кубических уравнений

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Пример 3.2

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .

Итак, мы нашли один корень:
x 1 = -1 .
Делим многочлен на x - x 1 = x - (-1) = x + 1 :


Тогда,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Данный онлайн-калькулятор предназначен для разложения функции на множители.

Например, разложить на множители: x 2 /3-3x+12 . Запишем как x^2/3-3*x+12 . Также можно использовать и этот сервис , где все выкладки сохраняются в формате Word .

Например, разложить на слагаемые . Запишем как (1-x^2)/(x^3+x) . Чтобы посмотреть ход решения, нажимаем Show steps . Если необходимо получить результат в формате Word используйте этот сервис .

Примечание : число "пи" (π) записывается как pi ; корень квадратный как sqrt , например, sqrt(3) , тангенс tg записывается как tan . Для просмотра ответа см. раздел Alternative .

  1. Если задано простое выражение, например, 8*d+12*c*d , то выражение разложить на множители означает представить выражение в виде сомножителей. Для этого необходимо найти общие множители. Данное выражение запишем как: 4*d*(2+3*c) .
  2. Представить произведение в виде двух двучленов: x 2 + 21yz + 7xz + 3xy . Здесь уже надо найти несколько общих сомножителей: x(x+7z) + 3y(x + 7z). Выносим (x+7z) и получаем: (x+7z)(x + 3y) .

см. также Деление многочленов уголком (показаны все шаги деления столбиком)

Полезным при изучении правил разложения на множители будут формулы сокращенного умножения , с помощью которых будет ясно, как раскрывать скобки с квадратом:

  1. (a+b) 2 = (a+b)(a+b) = a 2 +2ab+b 2
  2. (a-b) 2 = (a-b)(a-b) = a 2 -2ab+b 2
  3. (a+b)(a-b) = a 2 - b 2
  4. a 3 +b 3 = (a+b)(a 2 -ab+b 2)
  5. a 3 -b 3 = (a-b)(a 2 +ab+b 2)
  6. (a+b) 3 = (a+b)(a+b) 2 = a 3 +3a 2 b + 3ab 2 +b 3
  7. (a-b) 3 = (a-b)(a-b) 2 = a 3 -3a 2 b + 3ab 2 -b 3

Методы разложения на множители

Изучив несколько приемов разложение на множители можно составить следующую классификацию решений:
  1. Использование формул сокращенного умножения.
  2. Поиск общего множителя.

Что делать, если в процессе решения задачи из ЕГЭ или на вступительном экзамене по математике вы получили многочлен, который не получается разложить на множители стандартными методами, которыми вы научились в школе? В этой статье репетитор по математике расскажет об одном эффективном способе, изучение которого находится за рамками школьной программы, но с помощью которого разложить многочлен на множители не составит особого труда. Дочитайте эту статью до конца и посмотрите приложенный видеоурок. Знания, которые вы получите, помогут вам на экзамене.

Разложение многочлена на множители методом деления


С том случае, если вы получили многочлен больше второй степени и смогли угадать значение переменной, при которой этот многочлен становится равным нулю (например, это значение равно ), знайте! Этот многочлен можно без остатка разделить на .

Например, легко видеть, что многочлен четвёртой степени обращается в нуль при . Значит его без остатка можно разделить на , получив при этом многочлен третей степени (меньше на единицу). То есть представить в виде:

где A , B , C и D — некоторые числа. Раскроем скобки:

Поскольку коэффициенты при одинаковых степенях должны быть одинаковы, то получаем:

Итак, получили:

Идём дальше. Достаточно перебрать несколько небольших целых чисел, что увидеть, что многочлен третьей степени вновь делится на . При этом получается многочлена второй степени (меньше на единицу). Тогда переходим к новой записи:

где E , F и G — некоторые числа. Вновь раскрываем скобки и приходим к следующему выражению:

Опять из условия равенства коэффициентов при одинаковых степенях получаем:

Тогда получаем:

То есть исходный многочлен может быть разложен на множители следующим образом:

В принципе, при желании, используя формулу разность квадратов, результат можно представить также в следующем виде:

Вот такой простой и эффективный способ разложения многочленов на множители. Запомните его, он может вам пригодиться на экзамене или олимпиаде по математике. Проверьте, научились ли вы пользоваться этим методом. Попробуйте решить следующее задание самостоятельно.

Разложите многочлен на множители :

Свои ответы пишите в комментариях.

Материал подготовил , Сергей Валерьевич

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Вконтакте

  • 1. Вынесение общего множителя за скобки и способ группировки . В ряде случаев, целесообразно заменить некоторые члены на сумму (разность) подобных слагаемых или ввести взаимно уничтожающиеся члены.
  • 2. Использование формул сокращённого умножения. Иногда приходится выносить множители за скобки, группировать члены, выделять полный квадрат и только затем сумму кубов, разность квадратов или разность кубов представлять в виде произведения.
  • 3. Использование теоремы Безу и метода неопределённых коэффициентов .

Пример . Разложить на множители:

P 3 (x)= x 3 +4x 2 +5x+2;

Так как P 3 (-1)=0, то многочлен P 3 (x) делится на x+1. Методом неопределённых коэффициентов найдём частное от деления многочлена

P 3 (x)= x 3 +4x 2 +5x+2 на двучлен x+1.

Пусть частное есть многочлен x 2 +. Так как x 3 +4x 2 +5x+2=(x+1)·(x 2 +)=

X 3 +(+1)·x 2 +()·x+, получим систему:

Откуда. Следовательно, P 3 (x)=(x+1)·(x 2 +3x+2).

Поскольку x 2 +3x+2=x 2 +x+2x+2=x·(x+1)+2·(x+1)=(x+1)·(x+2), то P 3 (x)=(x+1) 2 ·(x+2).

4. Использование теоремы Безу и деления «столбиком».

Пример . Разложить на множители

P 4 (x) = 5·x 4 +9·x 3 -2·x 2 -4·x -8.

Решение . Поскольку P 4 (1) = 5+9-2-4-8 = 0, то P 4 (x) делится на (x-1). Деление «столбиком» найдем частное

Следовательно,

P 4 (x) = (x-)·(5·x 3 +14x 2 +12x+8)=

= (x-1) ·P 3 (x).

Так как P 3 (-2) = -40+56-24+8=0, то многочлен P 3 (x) = 5·x 3 +14x 2 +12x+8 делится на x+2.

Найдем частное делением «столбиком»:

Следовательно,

P 3 (x) = (x+2)·(5·x 2 +4x+4).

Так как дискриминант квадратного трехчлена 5·x 2 +4x+4 равен D = -24<0, то этот

квадратный трехчлен на линейные множители не разлагается.

Итак, P 4 (x) = (x-1)·(x+2)·(5·x 2 +4x+4)

5. Использование теоремы Безу и схемы Горнера. Полученное этими способами частное можно разлагать на множители любым другим или этим же способом.

Пример . Разложить на множители:

P 3 (x) = 2·x 3 -5·x 2 -196·x+99;

Решение .

Если данный многочлен имеет рациональные корни, то они могут быть только среди чисел 1/2, 1, 3/2, 3, 9/2, 11/2, 9, 33, 99, 11.

Для нахождения корня данного многочлена воспользуемся следующим утверждением:

Если на концах некоторого отрезка значения многочлена имеют разные знаки, то на интервале (a; b) существует хотя бы один корень этого многочлена.

Для данного многочлена P 3 (0) =99, P 3 (1) = - 100. Следовательно, на интервале (0; 1) имеется по крайней мере один корень данного многочлена. Поэтому среди выписанных выше 24 чисел целесообразно вначале проверить те числа, которые принадлежат интервалу

(0; 1). Из этих чисел только число принадлежит этому интервалу.

Значение P 3 (x) при x=1/2 можно находить не только непосредственной подстановкой, но и другими способами, например по схеме Горнера, так как P() равно остатку от деления многочлена P(x) на x-. Более того, во многих примерах этот способ предпочтительнее, так как одновременно находятся и коэффициенты частного.

По схеме Горнера для данного примера получим:

Так как P 3 (1/2) = 0, то x =1/2 является корнем многочлена P 3 (x), и многочлен P 3 (x) делится на x-1/2, т.е. 2·x 3 -5·x 2 -196·x+99 =(x-1/2)·(2·x 2 -4·x-198).

Поскольку 2·x 2 -4·x-198 = 2·(x 2 -2·x+1-100) = 2·((x-1) 2 -10 2) = 2·(x+9)·(x-11), то

P 3 (x) = 2·x 3 -5·x 2 -196·x+99 = 2·(x-1/2)·(x+9)·(x-11).

Понятие кольца многочлена

Пусть К и L коммутативные кольца

Определение 1 : Кольцо К называется простым расширением кольца K с помощью элементов x и пишут:

L=K[x] , если выполняются условия:

подкольцо кольца

Основное множество K[x] обозначают сомволами L, K[x].

Определение 2 : Простое расширение L=K[x] кольца K с помощью x - простое трансцендентное расширение кольца K с помощью x , если выполняются условия:

подкольцо кольца

Если, то

Определение 3 : Элемент x называется трансцендентным над кольцом K , если выполняется условие: , если, то

Предложение . Пусть K[x] простое трансцендентное расширение. Если и, где, то

Доказательство . По условию, вычтем из первого выражения второе, получим: так как элемент x трансцендентен над K , то из (3) получим:.

Вывод. Любой элемент простого трансцендентного расширения неравного нулю, коммутативного кольца K с помощью элемента x допускает единственное представление в виде линейной комбинации целых неотрицательных степеней элемента x

Определение: Кольцом многочлена от неизвестного x над, неравным нулю, кольцом K называется простое трансцендентное расширение не нулевого коммутативного кольца K с помощью элемента x .

Теорема . Для любого не нулевого коммутативного кольца K, существует его простое трансцендентное расширение с помощью элемента x, k[x]

Операции над многочленами

Пусть k[x] кольцо многочленов не нулевого коммутативного кольца K

Определение 1: Многочлены f и g принадлежащие k[x], называются равными и пишут f = g, если равны между собой все коэффицинты многочленов f и g, стоящие при одних степенях неизвестного x.

Следствие . В записи многочлена порядок следования слагаемых не существенно. Приписывая и исключая из записи многочлена слагаемые с нулевым коэффициентом, не изменит многочлен.

Определение 2. Суммой многочленов f и g называется многочлен f + g, определяемый равенством:

Определение 3 : - произведение многочленов, обозначается, который определяется по правилу:

Степень многочленов

Пусть коммутативное кольцо. k[x] кольцо многочленов над полем K : ,

Определение : Пусть - любой многочлен. Если, то целое неотрицательное число n - степень многочленов f . При этом пишут n=deg f .

Числа - коэффициенты многочлена, где - старший коэффициент.

Если, f - нормированный. Степень нулевого многочлена неопределенна.

Свойства степени многочлена

K - область целостности

Доказательство :

Так как и. К - область целостности.

Следствие 1 : k[x] над полем К (область целостности) в свою очередь является областью целостности. Для любой области целостности существует область частности.

Следствие 2 : Для любого k[x] над областью целостности К существует поле частных.

Деление на двучлен и корни многочлена.

Пусть, элемент называется значением многочлена f от аргумента.

Теорема Безу : Для любого многочлена и элемента, существует элемент: .

Доказательство : Пусть - любой многочлен

Следствие : Остаток от деления многочлена на, равно.

Определение : Элемент называется корнем многочлена f , если.

Теорема : Пусть, элемент является корнем f тогда и только тогда, когда делит f

Доказательство:

Необходимости. Пусть, из теоремы Безу следует, что, из свойств делимости следует, что

Достаточности. Пусть, что. ч.т.д.

Максимальное число корней многочлена над областью целостности.

Теорема : Пусть k - область целостности. Число корней многочлена f в области целостности k не больше степени n многочлена f .

Доказательство :

Индукцией по степени многочлена. Пусть многочлен f имеет ноль корней, и их число не превосходит.

Пусть теорема доказана для любого.

Покажем, что из пункта 2 следует истинность утверждения теоремы для многочленов.

Пусть и, возможны два случая:

  • А) Многочлен f не имеет корней, следовательно, утверждение теоремы истинно.
  • Б) Многочлен f имеет, по крайней мере, корень, по теореме Безу, так как k - область целостности то по свойству 3 (степени многочлена), следует, что

Так как, k - область целостности.

Таким образом, все корни многочлена, является корнем многочлена g так как, то по индукционному предположению, число всех корней многочлена g не больше n , следовательно, f имеет не больше (n+ 1) корень.

Следствие : Пусть k - область целостности, если число корней многочлена f больше числа n, где, то f - нулевой многочлен.

Алгебраическое и функциональное равенство многочленов

Пусть, - какой-то многочлен, он определяет некоторую функцию

в общем случае, любой многочлен может определять одну функцию.

Теорема : Пусть k - область целостности, таким образом, для равенства многочленов и равенство (тождественное равенство ()) определяемыми и.

Доказательство :

Необходимости. Пусть и - область целостности, .

Пусть, то есть

Достаточности. Предположим, что. Рассмотрим, так как k область целостности, то многочлен h имеет число корней, из следствия следует, что h нулевой многочлен. Таким образом, ч.т.д.

Теорема о делимости с остатком

Определение : Евклидовым кольцом K называется такая область целостности k, что на множестве определена функция h, приминающая целые неотрицательные значения и удовлетворяет условию

В процессе нахождения элементов для данных элементов называется делением с остатком, - неполное частное, - остаток от деления.

Пусть - кольцо многочленов над полем.

Теорема (о делении с остатком) : Пусть - кольцо многочленов над полем и многочлен существует единственная пара многочленов, такая, что и выполняется условие или. или

Доказательство : Существование многочлена. Пусть, то есть. Теорема верна, очевидно, если - нулевой или, так как или. Докажем теорему, когда. Доказательство проведём по индукции степени многочлена, предположим, что теорема доказана (кроме единственности), для многочлена. Покажем, что в этом случае утверждение теоремы выполнено для. Действительно, пусть - старший коэффициент многочлена, следовательно, многочлен будет иметь тот же старший коэффициент и тужу степень, что у многочлена, следовательно многочлен будет иметь или является нулевым многочленом. Если, то, следовательно, при и получим. Если, то по индуктивному предположению, следовательно, то есть, при получаем или. Существование многочлена доказано.

Покажем, что такая пара многочленов единственна.

Пусть существует или, вычтем: . Возможны два случая или.

С другой стороны. По условию степени или, или.

Если. Получено противоречие, таким образом. Единственность доказана.

Следствие 1 : Кольцом многочленов над полем, является Евклидово пространство.

Следствие 2 : Кольцом многочленов над, является кольцом главных идеалов (любой идеал имеет единственную образующую)

Любое Евклидово кольцо факториально: Кольцо многочлена над, называется факториальным кольцом.

Алгоритм Евклида. НОД двух многочленов

Пусть кольцо многочленов над.

Определение 1 : Пусть и, если существует многочлен, то остаток от деления равен нулю, то называется делителем многочлена и обозначается: ().

Определение 2 : Наибольший общий делитель многочленов и называется многочлен:

и (- общий делитель и).

(на любой общий делитель и).

Наибольший общий делитель многочленов и обозначается НОД(;). К числу общих делителей любых многочленов относят все многочлены нулевой степени из, то есть не нулевого поля. Может оказаться так, что два данных многочлена и не имеют общих делителей, не являющиеся нулевыми многочленами.

Определение : Если многочлены и не имеют общих делителей не являющихся многочленами нулевой степени, то они называются взаимно простыми.

Лемма : Если многочлены от над полем, имеет место, то наибольшим общим делителем многочленов и ассоциированы НОД. ~

Запись (a~b ) означает, что (и) по определению.

Доказательство : Пусть и

и, отсюда следует, что и поучаем, что - общий делитель многочлена и.

общий делитель и, получаем

Алгоритм Евклида