Меню Рубрики

Периодический закон и Периодическая система химических элементов Д.И. Менделеева

Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественнойклассификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

"

: как образно заметил известный русский химик Н. Д. Зелинский , Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

История

Поиски основы естественной классификации и систематизации химических элементов начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX века число известных химических элементов было мало, а принятые значения атомных масс многих элементов неверны.

Триады Дёберейнера и первые системы элементов

В начале 60-х годов XIX века появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

Октавы Ньюлендса

Таблица Ньюлендса (1866)

Вскоре после спирали де Шанкуртуа английский учёный Джон Ньюлендс сделал попытку сопоставить химические свойства элементов с их атомными массами . Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Найденную закономерность Ньюлендс назвал законом октав по аналогии с семью интервалами музыкальной гаммы. В своей таблице он располагал химические элементы в вертикальные группы по семь элементов в каждой и при этом обнаружил, что (при небольшом изменении порядка некоторых элементов) сходные по химическим свойствам элементы оказываются на одной горизонтальной линии.

Джон Ньюлендс, безусловно, первым дал ряд элементов, расположенных в порядке возрастания атомных масс, присвоил химическим элементам соответствующий порядковый номер и заметил систематическое соотношение между этим порядком и физико-химическими свойствами элементов. Он писал, что в такой последовательности повторяются свойства элементов, эквивалентные веса (массы) которых отличаются на 7 единиц, или на значение, кратное 7, т. е. как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

Проявления периодического закона в отношении энергии сродства к электрону

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов (см. определение энергии сродства к электрону).

Наибольшим сродством к электрону обладают p -элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s² ( , , ) и s²p 6 ( , ) или с наполовину заполненными p -орбиталями ( , , ) :

Проявления периодического закона в отношении электроотрицательности

Строго говоря, элементу нельзя приписать постоянную электроотрицательность . Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов , составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остается необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону .

В периодах наблюдается общая тенденция роста электроотрицательности, а в подгруппах - её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая - у p-элементов VII группы.

Проявления периодического закона в отношении атомных и ионных радиусов

Рис. 4 Зависимость орбитальных радиусов атомов от порядкового номера элемента.

Периодический характер изменения размеров атомов и ионов известен давно. Сложность здесь состоит в том, что из-за волновой природы электронного движения атомы не имеют строго определенных размеров. Так как непосредственное определение абсолютных размеров (радиусов) изолированных атомов невозможно, в данном случае часто используют их эмпирические значения. Их получают из измеренных межъядерных расстояний в кристаллах и свободных молекулах, разбивая каждое межъядерное расстояние на две части и приравнивая одну из них к радиусу первого (из двух связанных соответствующей химической связью) атома, а другую - к радиусу второго атома. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. д . Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга (например, атомы в твердом аргоне или атомы из двух соседних молекул N 2 в твердом азоте), но не связаны между собой какой-либо химической связью.

Но, очевидно, лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение (расстояние от ядра) главного максимума зарядовой плотности его наружных электронов . Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо (см. рис. 4), и основные моменты здесь состоят в наличии очень ярко выраженных максимумов, приходящихся на атомы щелочных металлов, и таких же минимумов, отвечающих благородным газам. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу носит, за исключением ряда - , немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов . В больших периодах в семействах d- и f- элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

Проявления периодического закона в отношении энергии атомизации

Следует подчеркнуть, что степень окисления элемента, будучи формальной характеристикой, не дает представления ни об эффективных зарядах атомов этого элемента в соединении, ни о валентности атомов, хотя степень окисления часто называют формальной валентностью. Многие элементы способны проявлять не одну, а несколько различных степеней окисления. Например, для хлора известны все степени окисления от −1 до +7, хотя четные очень неустойчивы, а для марганца - от +2 до +7. Высшие значения степени окисления изменяются в зависимости от порядкового номера элемента периодически, но эта периодичность имеет сложный характер. В простейшем случае в ряду элементов от щелочного металла до благородного газа высшая степень окисления возрастает от +1 ( F) до +8 ( О 4). В других случаях высшая степень окисления благородного газа оказывается меньше ( +4 F 4), чем для предшествующего галогена ( +7 О 4 −). Поэтому на кривой периодической зависимости высшей, степени окисления от порядкового номера элемента максимумы приходятся или на благородный газ, или на предшествующий ему галоген (минимумы - всегда на щелочной металл). Исключение составляет ряд - , в котором ни для галогена (), ни для благородного газа () вообще неизвестны высокие степени окисления, а наибольшим значением высшей степени окисления обладает средний член ряда - азот; поэтому в ряду - изменение высшей степени окисления оказывается проходящим через максимум. В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами. Например, возрастание высшей степени окисления в ряду - от +1 до +8 «осложняется» тем, что для молибдена, технеция и рутения известны такие высокие степени окисления, как +6 ( О 3), +7 ( 2 О 7), +8 ( O 4).

Проявления периодического закона в отношении окислительного потенциала

Одной из очень важных характеристик простого вещества является его окислительный потенциал , отражающий принципиальную способность простого вещества к взаимодействию с водными растворами, а также проявляемые им окислительно-восстановительные свойства . Изменение окислительных потенциалов простых веществ в зависимости от порядкового номера элемента также носит периодический характер. Но при этом следует иметь в виду, что на окислительный потенциал простого вещества оказывают влияние различные факторы, которые иногда нужно рассматривать индивидуально. Поэтому периодичность в изменении окислительных потенциалов следует интерпретировать очень осторожно.

/Na + (aq) /Mg 2+ (aq) /Al 3+ (aq)
2,71В 2,37В 1,66В
/K + (aq) /Ca 2+ (aq) /Sc 3+ (aq)
2,93В 2,87В 2,08В

Можно обнаружить некоторые определенные последовательности в изменении окислительных потенциалов простых веществ. В частности, в ряду металлов при переходе от щелочного к следующим за ним элементам происходит уменьшение окислительных потенциалов ( + (aq) и т. д. - гидратированный катион):

Это легко объясняется увеличением энергии ионизации атомов с увеличением числа удаляемых валентных электронов. Поэтому на кривой зависимости окислительных потенциалов простых веществ от порядкового номера элемента имеются максимумы, отвечающие щелочным металлам. Но это не единственная причина изменения окислительных потенциалов простых веществ.

Внутренняя и вторичная периодичность

s - и р -элементы

Выше рассмотрены общие тенденции в характере изменения значений энергии ионизации атомов , энергии сродства атомов к электрону , электроотрицательности , атомных и ионных радиусов, энергии атомизации простых веществ, степени окисления , окислительных потенциалов простых веществ от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. В характере изменения свойств элементов по периоду проявляется внутренняя периодичность, а по группе - вторичная периодичность (открыта Е. В. Бироном в 1915 году).

Так, при переходе от s-элемента I группы к р -элементу VIII группы на кривой энергии ионизации атомов и кривой изменения их радиусов имеются внутренние максимумы и минимумы (см. рис. 1, 2, 4).

Это свидетельствует о внутреннепериодическом характере изменения этих свойств по периоду. Объяснение отмеченных закономерностей можно дать с помощью представления об экранировании ядра.

Эффект экранирования ядра обусловлен электронами внутренних слоев, которые, заслоняя ядро, ослабляют притяжение к нему внешнего электрона. Так, при переходе от бериллия 4 к бору 5 , несмотря на увеличение заряда ядра, энергия ионизации атомов уменьшается:

Рис. 5 Схема строения последних уровней бериллия, 9.32 эВ (слева) и бора, 8,29 эВ (справа)

Это объясняется тем, что притяжение к ядру -электрона атома бора ослаблено за счет экранирующего действия 2s -электронов.

Понятно, что экранирование ядра возрастает с увеличением числа внутренних электронных слоев. Поэтому в подгруппах s - и р -элементов наблюдается тенденция к уменьшению энергии ионизации атомов (см. рис. 1).

Уменьшение энергии ионизации от азота 7 N к кислороду 8 О (см. рис. 1) объясняется взаимным отталкиванием двух электронов одной и той же орбитали:

Рис. 6 Схема строения последних уровней азота, 14,53 эВ (слева) и кислорода, 13,62 эВ (справа)

Эффектом экранирования и взаимного отталкивания электронов одной орбитали объясняется также внутреннепериодический характер изменения по периоду атомных радиусов (см. рис. 4).

Рис. 7 Вторичнопериодическая зависимость радиусов атомов внешних p-орбиталей от атомного номера

Рис. 8 Вторичнопериодическая зависимость первой энергии ионизации атомов от атомного номера

Рис. 9 Радиальное распределение электронной плотности в атоме натрия

В характере изменения свойств s - и р -элементов в подгруппах отчетливо наблюдается вторичная периодичность (рис. 7). Для её объяснения привлекается представление о проникновении электронов к ядру. Как показано на рисунке 9, электрон любой орбитали определенное время находится в области, близкой к ядру. Иными словами, внешние электроны проникают к ядру через слои внутренних электронов. Как видно из рисунка 9, внешний 3s -электрон атома натрия обладает весьма значительной вероятностью находиться вблизи ядра в области внутренних К - и L -электронных слоев.

Концентрация электронной плотности (степень проникновения электронов) при одном и том же главном квантовом числе наибольшая для s -электрона, меньше - для р -электрона, ещё меньше - для d -электрона и т. д. Например, при n = 3 степень проникновения убывает в последовательности 3s >3p >3d (см. рис. 10).

Рис. 10 Радиальное распределение вероятности нахождения электрона (электронной плотности) на расстоянии r от ядра

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Вследствие более глубокого проникновения s -электроны в большей степени экранируют ядро, чем р -электроны, а последние - сильнее, чем d -электроны, и т. д.

Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду - - - - проявляется общая тенденция увеличения радиуса атома (см. рис. 4, 7). Однако это увеличение имеет немонотонный характер. При переходе от Si к Ge внешние р -электроны проникают через экран из десяти 3d -электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6p -орбитали Pb по сравнению с 5р -орбиталью Sn обусловлено проникновением 6p -электронов под двойной экран десяти 5d -электронов и четырнадцати 4f -электронов. Этим же объясняется немонотонность в изменении энергии ионизации атомов в ряду C-Pb и большее значение её для Pb по сравнению с атомом Sn (см. рис. 1).

d -Элементы

Во внешнем слое у атомов d -элементов (за исключением ) находятся 1-2 электрона (ns -состояние). Остальные валентные электроны расположены в (n-1)d -состоянии, т. е. в предвнешнем слое.

Подобное строение электронных оболочек атомов определяет некоторые общие свойства d -элементов . Так, их атомы характеризуются сравнительно невысокими значениями первой энергии ионизации. Как видно на рисунке 1, при этом характер изменения энергии ионизации атомов по периоду в ряду d -элементов более плавный, чем в ряду s - и p -элементов. При переходе от d -элемента III группы к d -элементу II группы значения энергии ионизации изменяются немонотонно. Так, на участке кривой (рис. 1) видны две площадки, соответствующие энергии ионизации атомов, в которых заполняются Зd -орбитали по одному и по два электрона. Заполнение 3d -орбиталей по одному электрону заканчивается у (3d 5 4s 2), что отмечается некоторым повышением относительной устойчивости 4s 2 -конфигурации за счет проникновения 4s 2 -электронов под экран 3d 5 -конфигурации. Наибольшее значение энергии ионизации имеет (3d 10 4s 2), что находится в соответствии с полным завершением Зd -подслоя и стабилизацией электронной пары за счет проникновения под экран 3d 10 -конфигурации.

В подгруппах d -элементов значения энергии ионизации атомов в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру. Так, если у d -элементов 4-го периода внешние 4s -электроны проникают под экран 3d -электронов, то у элементов 6-го периода внешние 6s -электроны проникают уже под двойной экран 5d - и 4f -электронов. Например:

22 Ti …3d 2 4s 2 I = 6,82 эВ
40 Zr …3d 10 4s 2 4p 6 4d 2 5s 2 I = 6,84 эВ
72 Hf… 4d 10 4f 14 5s 2 5p 6 5d 2 6s 2 I = 7,5 эВ

Поэтому у d -элементов 6-го периода внешние бs -электроны связаны с ядром более прочно и, следовательно, энергия ионизации атомов больше, чем у d -элементов 4-го периода.

Размеры атомов d -элементов являются промежуточными между размерами атомов s - и p -элементов данного периода. Изменение радиусов их атомов по периоду более плавное, чем для s - и p -элементов.

В подгруппах d -элементов радиусы атомов в общем увеличиваются. Важно отметить следующую особенность: увеличение атомных и ионных радиусов в подгруппах d -элементов в основном отвечает переходу от элемента 4-го к элементу 5-го периода. Соответствующие же радиусы атомов d -элементов 5-го и 6-го периодов данной подгруппы примерно одинаковы. Это объясняется тем, что увеличение радиусов за счет возрастания числа электронных слоев при переходе от 5-го к 6-му периоду компенсируется f -сжатием, вызванным заполнением электронами 4f -подслоя у f -элементов 6-го периода. В этом случае f -сжатие называется лантаноидным . При аналогичных электронных конфигурациях внешних слоев и примерно одинаковых размерах атомов и ионов для d -элементов 5-го и 6-го периодов данной подгруппы характерна особая близость свойств.

Отмеченным закономерностям не подчиняются элементы подгруппы скандия. Для этой подгруппы типичны закономерности, характерные для соседних подгрупп s -элементов.

Периодический закон - основа химической систематики

См. также

Примечания

Литература

  1. Ахметов Н. С. Актуальные вопросы курса неорганической химии. - М.: Просвещение, 1991. - 224 с - ISBN 5-09-002630-0
  2. Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  3. Менделеев Д. И. Основы химии, т. 2. М.: Госхимиздат, 1947. 389 c.
  4. Менделеев Д.И. // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их различных соединений.

Работы предшественников Д.И. Менделеева:

1. Классификация Берцелиуса, не потерявшая своей актуальности и в наши дни (металлы, неметаллы)

2. Триады Деберейнера (например литий, натрий, калий)

4. Спираль-ось Шанкуртура

5. Кривая Мейера

Участие Д.И. Менделеева в Международном химическом конгрессе а г. Карслруэ (1860), где утвердились идеи атомистики и понятие «Атомный» вес, которое сейчас известно под названием «относительная атомная масса».

Личностные качества великого русского ученого Д.И. Менделеева.

Гениального русского химика отличали энциклопедичность знаний, скрупулезность химического эксперимента, величайшая научная интуиция, уверенность в истинности своей позиции и отсюда неустрашимый риск в отстаивании этой истины. Д.И. Менделеева был великим и замечательным гражданином земли русской.

Д.И.Менделеев расположил все известные ему химические элементы в длинную цепочки по возрастанию их атомных весов и отметил в ней отрезки – периоды, в которых свойства элементов и образованных ими веществ изменялись сходным образом, а именно:

1). Металлические свойства ослабевали;

2) Неметаллические свойства усиливались;

3) Степень окисления в высших оксидах увеличивалась с +1 до +7(+8);

4).Степень окисления элементов в гидроксидах, твердых солеподобных соединениях металлов с водородом возрастала от +1 до +3, а затем в летучих водородных соединениях от -4 до -1;

5) Оксиды от основных через амфотерные сменялись кислотными;

6) Гидроксиды от щелочей, через амфотерные сменялись кислотами.



Выводом его работы стала первая формулировка периодического закона (1 марта 1869 г): свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс.

Периодический закон и строение атома.

Формулировка периодического закона данная Менделеевым была неточной и не полной, т.к. она отражала состояние науки на тот момент, когда о сложном строении атома еще не было известно. Поэтому современная формулировка периодического закона звучит иначе: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от заряда их атомных ядер.

Периодическая система и строение атома.

Периодическая система – это графическое отображение периодического закона.

Каждое обозначение в периодической системе отражает какую-либо особенность или закономерность в строении атомов элементов:

Физический смысл номера элемента, периода, группы;

Причины изменения свойств элементов и образованных ими веществ по горизонтали (в периодах) и по вертикале (в группах).

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические – усиливаются, т.к.:

1) Увеличиваются заряды атомных ядер;

2) Увеличивается число электронов на внешнем уровне;

3) Число энергетических уровней постоянно;

4) Радиус атома уменьшается

В пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, неметаллические - ослабевают, т.к.:

1). Увеличиваются заряды атомных ядер;

2). Число электронов на внешнем уровне постоянно;

3). Увеличивается число энергетических уровней;

4). Увеличивается радиус атома

В результате этого была дана причинно-следственная формулировка периодического закона: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от изменения внешних электронных структур их атомов.

Значение периодического закона и периодической системы:

1. Позволили установить взаимосвязь между элементами, объединить их по свойствам;

2. Расположить химические элементы в естественной последовательности;

3. Вскрыть периодичность, т.е. повторяемость общих свойств отдельных элементов и их соединений;

4. Исправить и уточнить относительные атомные массы отдельных элементов (у бериллия с 13 на 9);

5. Исправить и уточнить степени окисления отдельных элементов (бериллий +3 на +2)

6. Предсказать и описать свойства, указать путь открытия еще неоткрытых элементов (скандия, галлия, германия)

Пользуясь таблицей сравним две ведущие теории химии.

Философские основы общности Периодический закон Д.И.Менделеева Теория органических соединений А.М. Бутлерова
1. 1. Время открытия 1869 г. 1861 г.
II. Предпосылки. 1.Накопление фактологического материала 2. 2. Работа предшественников 3. Съезд химиков в г. Карлсруэ (1860) 4. Личностные качества. Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их многочисленных соединений. Известны многие десятки и сотни тысяч органических соединений, состоящих лищь из немногих элементов: углерода, водорода, кислорода, реже – азота, фосфора и серы.
- Й. Берцеллиус (металлы и неметаллы) - И.В.Деберейнер (триады) - Д.А.Р.Ньюлендс (октавы) - Л.Мейер - Й. Берцеллиус, Ю.Либих, Ж.Дюма (теория радикалов); -Ж.Дюма, Ш.Жерара, О.Лоран (теория типов); - Й. Берцеллиус ввел а практику термин «изомерия»; -Ф.Велер, н.Н. Зинин, М.Бертло, сам А.Бутлеров(синтезы органических веществ, крах витализма); -Ф.А.Кукуле (строение бензола)
Д.И. Менделеев присутствовал в роли наблюдателя А.М.Бутлеров не участвовал, но активно изучал материалы съезда. Однако принимал участие в съезде врачей и естествоиспытателей в г. Шпейере (1861), где выступил с докладом « О строении органических тел»
Обоих авторов отличали от других химиков: энциклопедичность химических знаний, умение анализировать и обобщать факты, научное прогнозирование, русский менталитет и русский патриотизм.
III. Роль практики в становлении теории Д.И. Менделеев предсказывает и указывает пути открытия еще неизвестных науке галлия, скандия и германия А.М. Бутлеров предсказывает и объясняет изомерию многих органических соединений. Сам осуществляет многие синтезы

Тест по теме

Периодический закон и периодическая система элементов Д.И. Менделеева

1. Как меняются радиусы атомов в периоде:

2. Как меняются радиусы атомов в главных подгруппах:

а) увеличиваются б) уменьшаются в) не изменяются

3. Как определить число энергетических уровней в атоме элемента:

а) по порядковому номеру элемента б) по номеру группы

в) по номеру ряда г) по номеру периода

4. Как определяется место химического элемента в периодической системе Д.И. Менделеева:

а) количеством электронов на внешнем уровне б) количеством нейтронов в ядре

в) зарядом ядра атома г) атомной массой

5. Сколько энергетических уровней у атома скандия: а) 1 б) 2 в) 3 г) 4

6. Чем определяются свойства химических элементов:

а) величиной относительной атомной массы б) числом электронов на внешнем слое

в) зарядом ядра атома г) количеством валентных электронов

7. Как изменяются химические свойства элементов в периоде:

а) усиливаются металлические б) усиливаются неметаллические

в) не изменяются г) ослабевают неметаллические

8. Укажите элемент, возглавляющий большой период периодической системы элементов: а) Cu (№29) б) Ag (№47) в) Rb (№37) г) Au (№79)

9. У какого элемента наиболее выражены металлические свойства:

а) Магний б) Алюминий в) Кремний

10. У какого элемента наиболее выражены неметаллические свойства:

а) Кислород б) Сера в) Селен

11.В чём основная причина изменения свойств элементов в периодах:

а) в увеличении атомных масс

б) в постепенном увеличении числа электронов на внешнем энергетическом уровне

в) в увеличении числа электронов в атоме

г) в увеличении числа нейтронов я ядре

12. Какой элемент возглавляет главную подгруппу пятой группы :

а) ванадий б) азот в) фосфор г) мышьяк

13.Чему равно число орбиталей на d-подуровне: а)1 б)3 в)7 г)5

14. Чем отличаются атомы изотопов одного элемента:

а) числом протонов б) числом нейтронов в) числом электронов г) зарядом ядра

15. Что такое орбиталь:

а) определённый энергетический уровень, на котором находится электрон

б) пространство вокруг ядра, где находится электрон

в) пространство вокруг ядра, где вероятность нахождения электрона наибольшая

г) траектория, по которой движется электрон

16. На какой орбитали электрон имеет наибольшую энергию: а)1s б)2s в)3s г) 2p

17. Определите какой это элемент 1s 2 2s 2 2p 1: а) №1 б) №3 в) №5 г) №7

18. Чему равно число нейтронов в атоме +15 31 Р а)31 б)16 в)15 д)46

19. Какой элемент имеет строение наружного электронного слоя …3s 2 p 6:

а) неон б) хлор в) аргон г) сера

20. На основании электронной формулы определите, какими свойствами обладает элемент 1s 2 2s 2 2p 5 :

а) металл б) неметалл в) амфотерный элемент г) инертный элемент

21. Сколько химических элементов в шестом периоде: а)8 б)18 в)30 г)32

22. Чему равно массовое число азота +7 N который содержит 8 нейтронов:

а)14 б)15 в)16 г)17

23. Элемент, в ядре атома которого содержится 26 протонов: а)S б)Cu в)Fe г)Ca

Периодический Закон Менделеева . Открыт Д. И. Менделеевым в процессе работы над учебником "Основы химии" (1868-1871). Первоначально была разработана (1 марта 1869) таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" (см. Периодическая система химических элементов). Классич. менделеевская формулировка периодич. закона гласила: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодич. зависимости от их атомного веса". Физ. обоснование периодический закон получил благодаря разработке ядерной модели атома (см. Атом )и эксперим. доказательству числ. равенства порядкового номера элемента в периодич. системе заряду ядра (Z) его атома (1913). В результате появилась совр. формулировка периодического закона: свойства элементов, а также образуемых ими простых и сложных веществ находятся в периодич. зависимости от заряда ядра Z. В рамках квантовой теории атома было показано, что по мере возрастания Z периодически повторяется строение внеш. электронных оболочек атомов, что непосредственно и обусловливает специфику хим. свойств элементов.

Особенность периодического закона заключается в том, что он не имеет количеств. мат. выражения в виде какого-либо уравнения. Наглядное отражение периодического закона -периодич. система хим. элементов. Периодичность изменения их свойств отчетливо иллюстрируется также кривыми изменения некоторых физ. величин, например потенциалов ионизации. атомных радиусов и объемов.

Периодический закон универсален для Вселенной, сохраняя силу везде, где существуют атомные структуры материи. Однако конкретные его проявления определяются условиями, в которых реализуются разл. свойства хим. элементов. Напр., на Земле специфичность этих свойств обусловлена обилием кислорода и его соед., в т.ч. оксидов, что, в частности, во многом способствовало выявлению самого свойства периодичности.

Структура периодическаяой системы. Современная периодическая система включает 109 хим элементов (имеются сведения о синтезе в 1988 элемента с Z=110). Из них в прир. объектах обнаружены 89; все элементы, следующие за U, или трансурановые элементы (Z = 93 109), а также Tc (Z = 43), Pm (Z = 61) и At (Z = 85) были искусственно синтезированы с помощью разл. ядерных реакций. Элементы с Z= 106 109 пока не получили названий, поэтому соответствующие им символы в таблицах отсутствуют; для элемента с Z = 109 еще неизвестны массовые числа наиб. долгоживущих изотопов.

За всю историю периодической системы было опубликовано более 500 разл вариантов ее изображения. Это обусловливалось попытками отыскать рациональное решение нек-рых спорных проблем структуры периодической системы (размещение H, благородных газов, ланта-ноидов и трансурановых элементов и т.п.). Наиб. распространение получили след. табличные формы выражения периодической системы: 1) короткая предложена Менделеевым (в совр. виде помещена в начале тома на цветном форзаце); 2) длинная разрабатывалась Менделеевым, усовершенствована в 1905 А. Вернером (рис.2); 3) лестничная опубликована в 1921 H. Бором (рис. 3). В последние десятилетия особенно широко используются короткая и длинная формы, как наглядные и практически удобные. Все перечисл. формы имеют определенные достоинства и недостатки. Однако едва ли можно предложить к.-л. универс. вариант изображения периодической системы, к-рый адекватно отразил бы все многообразие св-в хим. элементов и специфику изменения их хим. поведения по мере возрастания Z.


Фундам. принцип построения периодической системы заключается в выделении в ней периодов (горизонтальные ряды) и групп (вертикальные столбцы) элементов. Современная периодическая система состоит из 7 периодов (седьмой, пока не завершенный, должен заканчиваться гипотетич. элементом с Z= 118) и 8 групп Периодом наз. совокупность элементов, начинающаяся щелочным металлом (или водородом первый период) и заканчивающаяся благородным газом. Числа элементов в периодах закономерно возрастают и, начиная со второго, попарно повторяются: 8, 8, 18, 18, 32, 32, ... (особый случай первый период, содержащий всего два элемента). Группа элементов не имеет четкой дефиниции; формально ее номер соответствует макс. значению степени окисления составляющих ее элементов, но это условие в ряде случаев не выполняется. Каждая группа подразделяется на главную (а)и побочную (б)подгруппы; в каждой из них содержатся элементы, сходные по хим. св-вам, атомы к-рых характеризуются одинаковым строением внеш. электронных оболочек. В большинстве групп элементы подгрупп а и б обнаруживают определенное хим. сходство, преим. в высших степенях окисления.

Особое место в структуре периодической системы занимает группа VIII. На протяжении длит. времени к ней относили только элементы "триад": Fe-Co-Ni и платиновые металлы (Ru Rh Pd и Os-Ir-Pt), а все благородные газы располагали в самостоят. нулевой группе; следовательно, периодическая система содержала 9 групп. После того как в 60-х гг. были получены соед. Xe, Kr и Rn, благородные газы стали размещать в подгруппе VIIIa, а нулевую группу упразднили. Элементы же триад составили подгруппу VIII6. Такое "структурное оформление" группы VIII фигурирует ныне практически во всех публикуемых вариантах выражения периодической системы.

Отличит. черта первого периода состоит в том, что он содержит всего 2 элемента: H и Не. Водород вследствие специфичности св-в - единств. элемент, не имеющий четко определенного места в периодической системе. Символ H помещают либо в подгруппу Ia, либо в подгруппу VIIa, либо в обе одновременно, заключая в одной из подгрупп символ в скобки, или, наконец, изображая его разл. шрифтами. Эти способы расположения H основаны на том, что он имеет нек-рые формальные черты сходства как со щелочными металлами, так и с галогенами.

Рис. 2. Длинная форма периодич. системы хим. элементов (совр. вариант). Рис. 3. Лестничная форма периодич. системы хим. элементов (H. Бор, 1921).

Второй период (Li-Ne), содержащий 8 элементов, начинается щелочным металлом Li (единств, степень окисления + 1); за ним следует металл Be (степень окисления + 2). Металлич. характер В (степень окисления +3) выражен слабо, а следующий за ним С - типичный неметалл (степень окисления +4). Последующие N, О, F и Ne-неметаллы, причем только у N высшая степень окисления + 5 отвечает номеру группы; О и F относятся к числу самых активных неметаллов.

Третий период (Na-Ar) также включает 8 элементов, характер изменения хим. св-в к-рых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg и Al более "металлич-ны", чем соотв. Be и В. Остальные элементы-Si, P, S, Cl и Ar-неметаллы; все они проявляют степени окисления, равные номеру группы, кроме Ar. T. обр., во втором и третьем периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллич. характера элементов.

Все элементы первых трех периодов относятся к подгруппам а. По совр. терминологии, элементы, принадлежащие к подгруппам Ia и IIa, наз. I-элементами (в цветной таблице их символы даны красным цветом), к подгруппам IIIa-VIIIa-р-элементами (символы оранжевого цвета).

Четвертый период (K-Kr) содержит 18 элементов. После щелочного металла К и щел.-зем. Ca (s-элементы) следует ряд из 10 т. наз. переходных (Sc-Zn), или d-элементов (символы синего цвета), к-рые входят в подгруппы б. Большинство переходных элементов (все они - металлы) проявляют высшие степени окисления, равные номеру группы, исключая триаду Fe-Co-Ni, где Fe в определенных условиях имеет степень окисления +6, а Со и Ni максимально трехвалентны. Элементы от Ga до Kr относятся к подгруппам a (р-элементы), и характер изменения их св-в во многом подобен изменению св-в элементов второго и третьего периодов в соответствующих интервалах значений Z. Для Kr получено неск. относительно устойчивых соед., в осн. с F.

Пятый период (Rb-Xe) построен аналогично четвертому; в нем также имеется вставка из 10 переходных, или d-элементов (Y-Cd). Особенности изменения св-в элементов в периоде: 1) в триаде Ru-Rh-Pd рутений проявляет макс, степень окисления 4- 8; 2) все элементы подгрупп а, включая Xe, проявляют высшие степени окисления, равные номеру группы; 3) у I отмечаются слабые металлич. св-ва. T. обр., св-ва элементов четвертого и пятого периодов по мере увеличения Z изменяются сложнее, чем св-ва элементов во втором и третьем периодах, что, в первую очередь, обусловлено наличием переходных d-элементов.

Шестой период (Cs-Rn) содержит 32 элемента. В него помимо десяти d-элементов (La, Hf-Hg) входит семейство из 14 f-элементов (символы черного цвета, от Ce до Lu)-лaнтaнoидoв. Они очень похожи по хим. св-вам (преим. в степени окисления +3) и поэтому не м. б. размещены по разл. группам системы. В короткой форме периодической системы все ланта-ноиды включены в подгруппу IIIa (клетка La), а их совокупность расшифрована под таблицей. Этот прием не лишен недостатков, поскольку 14 элементов как бы оказываются вне системы. В длинной и лестничной формах периодической системы специ-фика лантаноидов отражается на общем фоне ее структуры. Др. особенности элементов периода: 1) в триаде Os Ir Pt только Os проявляет макс. степень окисления +8; 2) At имеет более выраженный по сравнению с I металлич. характер; 3) Rn наиб. реакционноспособен из благородных газов, однако сильная радиоактивность затрудняет изучение его хим. св-в.

Седьмой период подобно шестому должен содержать 32 элемента, но еще не завершен. Fr и Ra элементы соотв. подгрупп Ia и IIa, Ac аналог элементов подгруппы III6. Согласно актинидной концепции Г. Сиборга (1944), после Ac следует семейство из 14 f-элементов актиноидов (Z = 90 103). В короткой форме периодической системы последние включаются в клетку Ac и подобно лантаноидам записываются отд. строкой под таблицей. Этот прием предполагал наличие определенного хим. сходства элементов двух f-семейств. Однако детальное изучение химии актиноидов показало, что они проявляют гораздо более широкий диапазон степеней окисления, в т. ч. и таких, как +7 (Np, Pu, Am). Кроме того, для тяжелых актиноидов характерна стабилизация низших степеней окисления (+ 2 или даже +1 для Md).

Оценка хим. природы Ku (Z = 104) и Ns (Z = 105), синтезированных в кол-ве единичных весьма короткоживущих атомов, позволила сделать вывод, что эти элементы аналоги соотв. Hf и Та, т. е. d-элементы, и должны располагаться в подгруппах IV6 и V6. Хим. идентификация элементов с Z= 106 109 не проводилась, но можно предполагать, что они относятся к переходным элементам седьмого периода. Расчеты с помощью ЭВМ свидетельствуют о принадлежности элементов с Z = 113 118 к p-элементам (подгруппы IIIa VIIIa).

На данном уроке рассматривается Периодический закон и Периодическая система химических элементов Д. И. Менделеева в свете теории строения атома. Объясняются следующие понятия: современная формулировка периодического закона, физический смысл номеров периода и группы, причины периодичности изменения характеристик и свойств атомов элементов и их соединений на примерах малых и больших периодов, главных подгрупп, физический смысл периодического закона, общая характеристика элемента и свойств его соединений на основе положения элемента в Периодической системе.

Тема: Строение атома. Периодический закон

Урок: Периодический закон и периодическая система химических элементов Д.И. Менделеева

В период становления науки химии ученые пытались привести в систему сведения об известных к тому времени нескольких десятков . Эта проблема увлекла и Д.И. Менделеева. Он искал закономерности и взаимосвязи, которые бы охватывали все элементы, а не только часть из них. Менделеев считал важнейшей характеристикой элемента массу его атома. Проанализировав все известные к тому времени сведения о химических элементах и расположив их в порядке возрастания их атомных масс, в 1869 году он сформулировал периодический закон.

Формулировка закона: свойства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значения атомных масс.

К моменту формулировки периодического закона еще не было известно строение атома и существования элементарных частиц. Также впоследствии было установлено, что от атомных масс свойства вещества не зависят, как это предполагал Менделеев. Хотя, не обладая этими сведениями, Д. И. Менделеев не сделал в своей таблице ни единой ошибки.

После открытия Мозли, который установил экспериментально, что заряд ядра атома совпадает с порядковым номером химического элемента, указанным Менделеевым в его таблице, в формулировку его закона внесли изменения.

Современная формулировка закона : свойства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значений зарядов ядер атомов.

Рис. 1. Графическим выражением периодического закона является Периодическая система химических элементов Д. И. Менделеева

Рис. 2. Рассмотрим принятые в ней обозначения на примере рубидия

В каждой ячейке, соответствующей элементу, представлены: химический символ, название, порядковый номер, соответствующий числу протонов в атоме, относительная атомная масса. Число электронов в атоме соответствует числу протонов. Количество нейтронов в атоме можно найти по разности между относительной атомной массой и количеством протонов, т. е. порядкового номера.

N (n 0 ) = A r - Z

Количество относительная порядковый

нейтронов атомная масса номер элемента

Например, для изотопа хлора 35 Cl количество нейтронов равно: 35-17=18

Составными частями периодической системы являются группы и периоды.

Периодическая система содержит восемь групп элементов. Каждая группа состоит их двух подгрупп: главной и побочной. Главные обозначены буквой а, а побочные - буквой б. Главная подгруппа содержит больше элементов, чем побочная. В главной подгруппе содержатся s- и p-элементы, в побочной - d-элементы.

Группа - столбец периодической системы, в котором объединены химические элементы, обладающие химическим сходством вследствие сходных электронных конфигураций валентного слоя . Это основополагающий принцип построения периодической системы. Рассмотрим это не примере элементов первых двух групп.

Табл. 1

Из таблицы видно, что элементы первой группы главной подгруппы имеют один валентный электрон. Элементы второй группы главной подгруппы имеют два валентных электрона.

Некоторые главные подруппы имеют свои особенные названия:

Табл. 2

Строка, называемая периодом, - это последовательность элементов, расположенных в порядке увеличения зарядов их ядер, которая начинается с щелочного металла (или водорода) и заканчивается благородным газом.

Номер периода равен количеству электронных уровней в атоме.

Существует два основных варианта представления периодической системы: длиннопериодный, в котором выделяют 18 групп (Рис. 3) и короткопериодный, в котором групп 8, но вводится понятие главной и побочной подгрупп (Рис. 1).

Домашнее задание

1. №№3-5 (с. 22) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Сравните электронную конфигурацию атомов углерода и кремния. Какую валентность и степени окисления они могут проявлять в химических соединениях? Приведите формулы соединений этих элементов с водородом. Приведите формулы их соединений с кислородом в высшей степени окисления.

3. Напишите электронные формулы внешних оболочек следующих элементов: 14 Si, 15 P, 16 S, 17 Cl, 34 Se, 52 Te. Три элемента из этого ряда являются химическими аналогами (проявляют похожие химические свойства). Какие это элементы?