Меню Рубрики

Правило ленца позволяет определить направление индукционного тока. Правило Ленца

Урок по теме «Правило Ленца. Явление самоиндукции. Энергия магнитного поля».

Цель урока : научиться определять направление индукционного тока; на примере правила Ленца сформулировать представление о фундаментальности ЗСЭ; разъяснить сущность явления самоиндукции; вывести формулу для расчета энергии магнитного поля, выяснить физический смысл этой формулы.

План урока:

    Проверка домашнего задания.

    Изложение нового материала.

    Закрепление.

    Домашнее задание.

    Проверка домашнего задания .

    План изложения нового материала:

1. Направление индукционного тока.
2. Правило Ленца и ЗСЭ.
3. Явление самоиндукции.
4. ЭДС самоиндукции.
5. Индуктивность.
6. Применение и учет самоиндукции в технике.
7. Энергия магнитного поля тока.

Направление индукционного тока.

Вопросы к учащимся для актуализации прежних знаний:

    Назвать две серии опытов Фарадея по исследованию явления электромагнитной индукции (возникновение индукционного тока в катушке при вдвигании и выдвигании магнита или катушки с током; возникновение индукционного тока в одной катушке при изменении тока в другой путем замыкания-размыкания цепи или использования реостата).

    Зависит ли направление отклонения стрелки гальванометра от направления движения магнита относительно катушки? (зависит: при приближении магнита к катушке стрелка отклоняется в одну сторону, при удалении магнита – в другую).

    Чем отличается (судя по показаниям гальванометра) индукционный ток, возникающий в катушке при приближении магнита, от тока, возникающего при удалении магнита (при одинаковой скорости движения магнита)? (ток отличается направлением).

Таким образом, при движении магнита относительно катушки направление отклонения стрелки гальванометра (а, значит, и направление тока) может быть различным (слайд 5).

Сформулируем при помощи опыта Ленца правило нахождения направления индукционного тока (видеоролик «Демонстрация явления электромагнитной индукции»). Объяснение опыта Ленца (слайд 6): Если приближать магнит к проводящему кольцу, то оно начнет отталкиваться от магнита. Это отталкивание можно объяснить только тем, что в кольце возникает индукционный ток, обусловленный возрастанием магнитного потока через кольцо, а кольцо с током взаимодействует с магнитом.

Правило Ленца и закон сохранения энергии (слайд 7).

Если магнитный поток через контур возрастает, то направление индукционного тока в контуре таково, что вектор магнитной индукции созданного этим током поля направлен противоположно вектору магнитной индукции внешнего магнитного поля.

Если магнитный поток через контур уменьшается, то направление индукционного тока таково, что вектор магнитной индукции созданного этим током поля сонаправлен вектору магнитной индукции внешнего поля.

Формулировка правила Ленца (слайд 8): индукционный ток имеет такое направление, что созданный им магнитный поток всегда стремится скомпенсировать то изменение магнитного потока, которое вызвало данный ток.

Правило Ленца является следствием закона сохранения энергии.

Рассмотрим пример проявления правила Ленца в жизни (слайд 9) – парение магнита над сверхпроводящей чашей. Кратко объяснить происходящее можно так: магнит падает; возникает переменное магнитное поле; возникает вихревое электрическое поле; в сверхпроводнике возникают незатухающие кольцевые токи; согласно правилу Ленца направление этих токов таково, что магнит отталкивается от сверхпроводника; магнит «парит» над чашей.

Явление самоиндукции.

Прежде, чем рассмотреть явление самоиндукции, вспомним, в чем заключается суть явления электромагнитной индукции – это возникновение индукционного тока в замкнутом контуре при изменении магнитного потока, пронизывающего этот контур. Рассмотрим один из вариантов опытов Фарадея (слайд 10): Если в цепи, содержащей замкнутый контур (катушку) менять силу тока, то в самом контуре возникнет ещё и индукционный ток. Этот ток также будет подчиняться правилу Ленца.

Рассмотрим опыт по замыканию цепи, содержащей катушку (слайд 11). При замыкании цепи с катушкой определенное значение силы тока устанавливается лишь спустя некоторое время.

Определение самоиндукции (слайд 12): САМОИНДУКЦИЯ – возникновение вихревого электрического поля в проводящем контуре при изменении силы тока в нем; частный случай электромагнитной индукции.
Вследствие самоиндукции замкнутый контур обладает «инертностью»: силу тока в контуре, содержащем катушку, нельзя изменить мгновенно.

ЭДС самоиндукции (слайд 13). Какова формула закона электромагнитной индукции?

(ℰ i = -). Если магнитное поле создано током, то можно утверждать, что Ф ~ В ~ I , т.е. Ф ~ I или Ф= LI , где L – индуктивность контура (или коэффициент самоиндукции). Тогда закон электромагнитной индукции в случае самоиндукции примет вид: si = - = - или ℰ si = - L (формула для расчета ЭДС самоиндукции).

Индуктивность (слайд 14).

Если из формулы для расчета ЭДС самоиндукции выразить коэффициент пропорциональности L , получим: L = ℰ si / . Затем приравняем к единице значения величин, которые мы непосредственно можем задать – величину скорости изменения силы тока 1 ампер в секунду. Получим формулу, отражающую физический смысл коэффициента самоиндукции (индуктивности): индуктивность контура численно равна ЭДС самоиндукции, возникающей при изменении силы тока на 1 А за 1 с.

Единицы измерения индуктивности в системе СИ: = 1 = 1 Гн (генри).

Применение и учет самоиндукции в технике (слайд 15).

Вследствие явления самоиндукции при размыкании цепей, содержащих катушки со стальными сердечниками (электромагниты, двигатели, трансформаторы) создается значительная ЭДС самоиндукции и может возникнуть искрение или даже дуговой разряд. В качестве домашнего задания предлагаю (по желанию) подготовить презентацию на тему «Как устранить нежелательную самоиндукцию при размыкании цепи?».

Энергия магнитного поля (слайд 16):

Вспомним опыт, подтверждающий существование явления самоиндукции: при замыкании цепи лампочка вспыхивала не сразу, но и при размыкании цепи с катушкой лампочка вместо того, чтобы, погаснуть, на короткое время вспыхивала. Очевидно, для вспышки лампочки необходима энергия. И энергия эта запасается в катушке в виде энергии магнитного поля. Для вывода энергии магнитного поля используем аналогию между установлением в цепи электрического тока величиной I и процессом набора телом скорости V .

1. Установление в цепи тока I происходит постепенно.

1. Достижение телом скорости V происходит постепенно.

2. Для достижения силы тока I необходимо совершить работу.

2. Для достижения скорости V необходимо совершить работу.

3. Чем больше L , тем медленнее растет I .

3. Чем больше m , тем медленнее растет V .

4. W м =

4. E к =

    Закрепление (слайд 17) - вопросы 1 - 8 на стр. 113 учебника.

    Домашнее задание (слайд 18) - § 15

В предыдущем параграфе были рассмотрены опыты по получению индукционного тока и установлена причина его возникновения.

Как же направлен индукционный ток? Для ответа на этот вопрос воспользуемся прибором, изображённым на рисунке 123. Он представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Рис. 123. При приближении к сплошному кольцу любого полюса магнита кольцо отталкивается от него

Возьмём полосовой магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом (как показано на рисунке), а южным. Объясним наблюдаемые явления.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается (рис. 124). При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Рис. 124. Возникновение индукционного тока в сплошном кольце при приближении к кольцу магнита

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции (В к и В м) их полей направлены в противоположные стороны (рис. 125). Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки (см. рис. 97) определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Рис. 125. Определение направления индукционного тока в кольце

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему (рис. 126). Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону (рис. 127). При одинаковом направлении В к и В м магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

Рис. 126. При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом

Рис. 127. Направление индукционного тока в кольце меняется при изменении направления движения магнита относительно кольца

Мы видим, что для определения направления индукционного тока прежде всего необходимо узнать, как направлен вектор магнитной индукции созданного этим током магнитного поля (в центре кольца). На основании результатов рассмотренных опытов (в одном из них внешний магнитный поток увеличивался, а в другом - уменьшался) было сформулировано правило, которое в современной формулировке звучит так:

  • возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток

Данное правило было установлено в 1834 г. российским учёным Эмилием Христиановичем Ленцем, в связи с чем называется правилом Ленца.

Вопросы

  1. Для чего проводился опыт, изображённый на рисунках 123 и 126?
  2. Почему кольцо с разрезом не реагирует на приближение магнита?
  3. Объясните явления, происходящие при приближении магнита к сплошному кольцу (см. рис. 125); при удалении магнита (см. рис. 127).
  4. Как определить направление индукционного тока в кольце?
  5. Сформулируйте правило Ленца.

Упражнение 37

  1. Как вы думаете, почему прибор, изображённый на рисунке 123, изготовлен из алюминия? Как проходил бы опыт, если бы прибор был железным; медным?
  2. В данном ниже перечне логических операций, которые мы выполняли для определения направления индукционного тока, нарушена последовательность их проведения. Запишите в тетради буквы, обозначающие эти операции, расположив их в правильной последовательности.
    1. Определили направление индукционного тока в кольце (пользуясь правилом правой руки).
    2. Определили направление вектора индукции В к магнитного поля тока в кольце по отношению к направлению вектора магнитной индукции B м поля магнита, исходя из того, что кольцо отталкивается от магнита при его приближении (значит, они обращены друг к другу одноимёнными полюсами) и притягивается при удалении (значит, кольцо и магнит обращены друг к другу разноимёнными полюсами).
    3. Определили направление вектора магнитной индукции В м поля магнита (по расположению его полюсов).

Определение 1

Э.Х.Ленц предложил правило (закон) , который позволяет найти направление индукционного тока . В его формулировке он таков: «Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызвало бы движение покоящегося провода в направлении, прямо противоположном направлению движения , навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или в прямо противоположном».

Определение 2

В настоящее время правило Ленца формулируют короче: «Направление индукционного тока таково, что его действие противоположно действию причины его вызывающей». Или: Токи индукции, которых появляются в проводнике в результате их движения в постоянном магнитном поле имеют такое направление, при котором пондемоторные силы магнитного поля, которые испытывают эти проводники, препятствуют движению проводников.

Это правило соблюдается во всех случаях возникновения индукции.

Рисунок 1.

Допустим, что индукция возникает в контуре (2) при его перемещении в магнитном поле контура с током (1) (рис.1). При этом появляется индукционный ток, имеющий такое направление, что сила взаимодействия с контуром (1) противодействует движению контура. Если контур (2) приближать к контуру (1), появляется ток $I_2"$, при этом магнитный момент этого тока направлен против поля тока $I_1$. На контур (2) действует сила, которая отталкивает его от контура (1). Если контур (2) удалять от контура (1) в контуре (2) возникнет ток $I^{""}_2,$ направление его момента совпадет с полем тока $I_1$, следовательно, сила, которая действует на контур (2) притягивает его к контуру (1).

Допустим, что оба контура неподвижны, в контуре (1) течет переменный ток $I_1$, изменения которого вызывает появление тока $I_2$. Направление тока во втором конуре таково, что создаваемый этим током магнитный поток $(Ф)$ стремится ослабить изменения внешнего потока, который ведет к возникновению индукционного тока. При увеличении тока $I_1$ увеличивается внешний магнитный поток, который направлен вправо, появляется ток $I_2"$, который создает поток, направленный влево (рис.1).

В случае если ток $I_1$ уменьшается, в контуре (2) появляется ток $I^{""}_2,$ магнитный поток которого направлен так же, как внешний поток, дополнительный магнитный поток поддерживает внешний поток без изменений.

Правило Ленца и закон сохранения энергии

Закон Ленца является следствием закона сохранения энергии. Индукционные токи, как и любые другие, производят работу. Например, если замкнутый проводник движется в магнитном поле, внешними силами должна быть выполнена дополнительная работа, так как индукционные токи взаимодействуют с магнитным полем, порождая силы, которые направлены противоположно движению.

Пример 1

Задание: Укажите направление индукционного тока, который возникает в контуре а) если магнит приближать к контуру; b) при удалении магнита от контура (рис.2). Объясните, как взаимодействуют магнит и виток с током в случаях a) и b).

Рисунок 2.

Решение:

Когда мы приближаем к контуру северный полюс магнита $(N)$, то на контуре возникает тоже северный магнитный полюс. Когда мы удаляем от контура северный полюс магнита, то на контуре возникает южный полюс. При этом одноименные полюса магнита отталкиваются, а разноименные притягиваются. Значит, когда возникает индукционный ток в контуре при приближении магнита к контуру, то силы взаимодействия между магнитом и индукционным током отталкивают магнит от витка, а в случае возникновения тока в контуре при удалении магнита, то виток с индукционным током и магнит притягиваются.

В соответствии с правилом Ленца, направления токов будут иметь направления, указанные на рис.3.

Рисунок 3.

Пример 2

Задание: Прямолинейный проводник длины $l$ движется параллельно самому себе в магнитном поле. Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдите ЭДС, которая возникает в проводнике, укажите направление индукционного тока.

Решение:

Рисунок 4.

Обозначим через $v$ мгновенную скорость движения проводника, $dt$ - время движения проводника, тогда проводник опишет площадь равную:

За время $dt$ проводник пересечет все линии магнитной индукции, которые проходят через площадь $dS$. Изменение магнитного потока, следовательно, можно записать как:

где $B_n$ - составляющая магнитной индукции, которая перпендикулярна к площадке $dS$. Используя закон Фарадея, получим:

\[{{\mathcal E}}_i=-\frac{dФ}{dt}={-B}_nlv.\]

Направление индукционного тока и знак ЭДС определяется правилом Ленца. Ток направлен так, что механическая сила, действующая на проводник, противоположна скорости.

Ответ: ${{\mathcal E}}_i={-B}_nlv.$

Э.Х. Ленцем установлен закон, позволяющий определить направление тока индукции. Получив информацию об открытии М. Фарадеем явления электромагнитной индукции, Ленц провел ряд экспериментов для того, чтобы получить количественные законы индукции. Он полагал, что «сила мгновенного тока» работает как удар. И сила данного удара измеряется по скорости, которая сообщается стрелке индикатора электрического тока. Ленц сделал вывод о том, что появление тока индукции зависит от скорости «отрыва» катушки от магнита, ЭДС, которая возбуждается в катушке, пропорциональна количеству витков и равна результирующей ЭДС, которые возбуждаются в каждом витке, при этом на нее не влияют материал и диаметр обмотки якоря. Но самым важным открытием, которое сделал Ленц, стал закон (часто его называют правилом) о направлении тока индукции. До него, сам Фарадей и ряд других ученых, предлагали весьма сложные правила, которые давали возможность определить направление индукционного тока для частных случаев.

Формулировка закона Ленца

Индукционный ток всегда направлен так, что его действие противоположно действию причины, вызвавшей этот ток.

Закон Ленца применим, когда проводники движутся, а магнитное поле постоянно и в случае, когда проводники неподвижны, а переменным является магнитное поле (сила тока). Индукционные токи всегда вызывают поле, которое стремится противодействовать изменениям внешнего поля, вызвавшим эти токи.

Закон Ленца является следствием закона сохранения энергии. Так, токи индукции, как и любые другие токи, совершают определенную работу. Это означает, что при движении замкнутого проводника в магнитном поле должна произвестись дополнительная работа внешних сил. Эта работа появляется, так как токи индукции взаимодействуют с магнитным полем, вызывают силы, которые направлены в сторону, противоположную движению (то есть движению препятствуют).

Если записать закон электромагнитной индукции в формулировке Максвелла:

где — ЭДС индукции, Ф —магнитный поток. Знак минус в формуле (1) соответствует закону Ленца.

Допустим, что положительное направление нормали совпадает с направлением магнитной индукции. В таком случае поток через контур является положительным. Если магнитное поле, в рассматриваемом случае, будет увеличиваться (то есть title="Rendered by QuickLaTeX.com" height="22" width="54" style="vertical-align: -6px;">), то в соответствии (1), а это значит, что сила тока . Получается, что направление тока индукции является противоположным к избранному нами положительному направлению.

Следствием закона Ленца считают принцип обратимости электрических машин:

Электрическая машина обратима, то есть она может работать и как генератор, и как двигатель.

План использования правила Ленца

Правило Ленца, например, можно применять, используя следующую последовательность действий (удобно для замкнутого контура):

  1. Определить (рассмотреть) как направлен вектор внешнего магнитного поля.
  2. Определить уменьшается или увеличивается магнитный поток сквозь контур.
  3. Указать направление вектора магнитной индукции поля тока индукции. В том случае, если магнитный поток внешнего поля уменьшается, то вектор магнитной индукции поля индукционного тока является сонаправленным с внешним полем.
  4. Применяя правило буравчика (для кругового тока) или правила правой руки для прямого тока определить направление тока индукции.

Примеры решения задач

ПРИМЕР 1

Задание Прямолинейный проводник перемещается параллельно самому себе в постоянном магнитном поле (рис.1). Как будет направлен индукционный ток?


Решение Будем считать, что плоскость, в которой движется проводник, перпендикулярна плоскости рисунка, линии магнитного поля лежат в плоскости рисунка (рис.1). Направление тока индукции и знак ЭДС определяются при помощи закона Ленца: ток направлен так, что механическая сила, которая действует на перемещающийся проводник, противоположна скорости движения, то есть она тормозит проводник. Сила, которая действует на проводник с током — это сила Ампера. Ее направление определяют при помощи правила левой руки: Линии магнитного поля должны входить в ладонь, четыре пальца направлены по току, отогнутый на 900 большой палец указывает на направление действия силы. Для того чтобы сила Ампера была направлена против скорости, ток в проводнике должен течь на нас.
Ответ Индукционный ток направлен на нас.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Применение правила Ленца

1. показать направление вектора В внешнего магнитного поля; 2. определить увеличивается или уменьшается магнитный поток через контур; 3. показать направление вектора Вi магнитного поля индукционного тока (при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно); 4. по правилу буравчика определить направление индукционного тока в контуре.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Эл. ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции. Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему "-" ? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Где R - сопротивление проводника.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результате Л1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критическойтемпературы (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик - такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3 d -металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er

Магнитный гистерезис - явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках - Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Колебательный контур - осциллятор, представляющий собой электрическую цепь, содержащую соединённыекатушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды.

Свойства электромагнитных волн: -распространяются не только в веществе, но и в вакууме; - распространяются в вакууме со скоростью света (С = 300 000 км/c); - это поперечные волны; - это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды. Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.